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Automata Theory Based on Quantum Logic II
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We establish the pumping lemma in automata theory based on quantum logic
under certain conditions on implication, and discuss the recognizability by the
product and union of orthomodular lattice-valued (quantum) automata. In
particular, we show that the equivalence between the recognizabilty by the product
of automata and the conjunction of the recognizabilities by the factor automata
is equivalent to the distributivity of meet over union in the truth-value set.

1. INTRODUCTION

The idea of establishing mathematics based on many-valued logics was
first proposed by Rosser and Turquette [RT52] in 1952, but this idea has not
attracted much attention in logical community. One reason for this may be
that there is no suitable method to develop mathematics within the framework
of many-valued logics. As is well known, classical logic is the underlying
logic of classical mathematics and the former is used as the deduction tool
in the latter. In other words, what is used in classical mathematics is the
deduction (proof-theoretic) aspect of classical logic. However, the proof
theory of many-valued logics is much more complicated than that of classical
logic and it is not an easy task to conduct reasoning in the realm of the proof
theory of many-valued logics, and, even worse, the axiomatizations of some
many-valued logics are still to be found. Thus, our experience in studying
classical mathematics may be not suited, or at least cannot directly apply, to
develop mathematics based on many-valued logics. In the early 1990s, the
author [Y91–93, Y93] established elementarily topology based on residuated
lattice-valued logic by employing so-called a semantical analysis approach.
Roughly speaking, the semantical analysis approach transforms our intended
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conclusions in mathematics, which are usually expressed as implication for-
mulas in our logical language, into inequalities in the truth-value set by truth
valuation rules, and then we demonstrate these inequalities in an algebraic
way and conclude that the conclusions are semantically valid.

Recently, the author used the semantical analysis approach to study
automata theory based on quantum logic. Our purpose is to provide a new
model of quantum computation [F82, F86, D85]. Computation based on
quantum mechanics was first realized by Feynman [F82, F86], and then was
elaborated and formalized by Deutsch [D85]. Since Deutsch’s seminal work
[D85], several theoretical models of quantum computation were introduced;
for example, see [MC00]. These models may be roughly seen as the quantum
probabilistic version of automata. The author [Y00], however, proposed to
study quantum computation from a different direction, namely, to develop
automata theory based on quantum logic. As early as 1936, Birkhoff and
von Neumann [BvN36] realized that quantum mechanical systems are not
governed by classical logical laws, and they introduced orthomodular lattice-
valued logic as the logic of quantum mechanism. Quantum logic has received
a great deal of interest in both the mathematical physics community and the
logic community; see [DC86, RR91, RZ99] for examples. With this back-
ground in mind, one may naturally conceive that it is interesting to establish
computing theory based on quantum logic. The author’s paper [Y00] might
be an initial step toward this direction. In that paper, we presented a basic
framework of automata theory based on quantum logic. In particular, the
orthomodular lattice-valued (quantum) predicate of recognizability was intro-
duced. Then we clarified the relationship between classical recognizability
and quantum recognizability; that is, we gave a simple conncetion between
them, and showed that quantum recognizability does not in general degenerate
into the classical one by an example. It is also shown that the recognizability
of a quantum language is not less than the volume of its finite part. Further-
more, we introduced the inverse operation of a quantum automaton and
showed that the language recognized by the inverse of a quantum automaton
is the inverse of the language recognized by this quantum automaton, simply
generalizing the corresponding result in classical automata theory,

This paper is a continuation of [Y00]. In this paper, we establish the
pumping lemma in automata theory based on quantum logic under certain
natural conditions on implication (see Proposition 1), introduce product and
union of quantum automata, and discuss the relation between the language
recognized by the product or union of quantum automata and the languages
recognized by its components. The case of union is very simple, and we
have a direct generalization of the result regarding the union of automata in
the classical theory; that is, the language recognized by the union of quantum
automata is the union of the languages recognized by these quantum automata



Automata Theory Based on Quantum Logic II 2547

(see Proposition 3). The situation is completely different for the product of
quantum automata. In classical automata theory, the language recognized by
the product of automata is the intersection of the languages recognized by
the factors. However, this result holds if and only if the meet is distributive
over the union in the truth-value set of the underlying logic (see Proposition
2). This is indeed a negative result in automata theory based on quantum
logic. Because an orthomodular lattice possessing the distributivity is a Bool-
ean algebra, the result concerning the product of automata in the classical
theory is no longer true unless the underlying quantum logic degenerates to
classical (Boolean) logic. This negative result may help us to clarify the
boundary between classical computation and quantum computation.

2. PRELIMINARIES

For convenience, in this section we recall some notions and notations
in quantum logic [DC86, RR91, RZ99, S98]. Also, we review several concepts
from our previous work [Y00].

First, we consider truth-value sets of quantum logic. What we use as
truth-value sets of quantum logic are complete orthomodular lattices. A
complete orthomodular lattice is a 7-tuple l 5 ^L, #, ∧, ∨, ', 1, 0&, where:

1. ^L, #, ∧, ∨, 1, 0& is a complete lattice; 1 and 0 are respectively the
greatest element and the least element of L; # is the partial ordering in L;
and for any M # L, ∧M and ∨M stand for the greatest lower bound and the
least upper bound of M, respectively. Thus, 1 5 ∧f 5 ∨L and 0 5 ∨f 5
∧L. The binary ∧ and ∨ are respectively called meet and union.

2. ' is a unary operation on L, called orthocomplement, and it satisfies
the following conditions for all a, b P L:

(a) a ∧ a' 5 0 and a ∨ a' 5 1.
(b) a'' 5 a.
(c) a # b implies b' # a'.
(d) a ∧ (a' ∨ (a ∧ b)) # b.

Quantum logic is an orthomodular lattice-valued logic. Obviously, ortho-
complement ', meet ∧, and union ∨ in an orthomodular lattice may serve
as the truth-value functions of connectives: negation, conjunction, and dis-
junction, respectively, in quantum logic; and 1 and 0 may act as the respective
interpretations of truth and falsity. In addition, we are concerned with complete
orthomodular lattices in this paper; so, arbitrary ∧ and ∨ are well defined
and they may be used to interpret the universal and existential quantifiers.
Therefore, what is still missing in a complete orthomodular lattice employed
as a truth-value set of quantum logic is a binary operation over it which is
suited to be the truth-value function of implication. As is well known, all
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implication operators that one can reasonably envisage in an orthomodular
lattice are more or less anomalous in the sense that they do not share this or
that fundamental property of the implication in classical logic. Usually one
chooses a fixed implication operator with a certain reason and then establishes
various theorems in the quantum logic with this specific implication. For
example, Román and Zuazua [RZ99] argued the reasonableness of the Sasaki
arrow. In [Y00] we also adopted the Sasaki arrow as implication operator.
For a detailed discussion on implications in quantum logic, see DC86, Section
2. In this paper, a different strategy is used: we suppose a truth-value set of
quantum logic is a complete orthomodular lattice equipped with a binary
operation →. This operation → will be used as the truth-value function of
implication in quantum logic, but we leave it completely unspecified and
then observe what conditions it should satisfy to validate an intended property
of quantum automata.

Second, we present the syntax of quantum logic. According to the
strategy stated above, we now assume that l 5 ^L, #, ∧, ∨, ', 1, 0& is a
complete orthomodular lattice and →: L 3 L → L is a binary operation on
L. Then we work within the l-valued (quantum) logic. The language of l-
valued logic has three primitive connectives: one unary connective ¬ (nega-
tion) and two binary connectives ∧ (conjunction) and → (implication). Note
that here → must be treated as a primitive connective in our logic because
the implication operator in the truth-value set is presumed, but not derived
from other operations. This is different from what we did in [Y00] where
we adopted the Sasaki arrow as implication operator, and the Sasaki arrow
may be defined in terms of orthocomplement and meet and union. The logical
language also has a primitive quantifier ∀ (universal quantifier). In what
follows we shall additionally employ the set-theoretic predicate symbol P
(membership) as a primitive symbol. The syntax of l-valued logic is defined
in a familiar way; we omit its details, but display several derived formulas
in the l-valued logical language and set-theoretic language. These formulas
will be needed in the sequel:

1. w ~ c 5
def ¬(¬w ` ¬c)

2. w } c 5
def

(w → c) ` (c → w)
3. (∃x)w 5

def ¬(∀x) ¬w
4. A # B 5

def
(∀x)(x P A → x P B)

5. A [ B 5
def

(A # B) ` (B # A)

Third, we give the semantics of quantum logic. An l-valued interpretation
is different from an interpretation in classical logic only in that each predicate
symbol is associated with an l-valued relation, i.e., a mapping from the
product of some copies of the discourse universe into L, where the number
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of copies is exactly the arity of the predicate symbol. As usual, an l-valued
interpretation determines a truth valuation, i.e., a mapping from the set of
(well-formed) formulas into the truth-value set. This truth valuation assigns
an element of the truth-value set to each formula and this element is the truth
value of the formula under the interpretation. For any formula w, its truth
value is in L and we write w for it. Then the truth valuation for logical and
set-theoretic formulas is given by the following valuation rules:

1. ¬w 5 w'.
2. w ∧ c 5 w ∧ c.
3. w → c 5 w → c.
4. If U is the discourse universe, then (∀x)w 5 `uPUw{u/x}.
5. x P A 5 A(x), where A on the left-hand side is a set constant

(unary predicate symbol) and its interpretation is A on the right-
hand side, which is an l-valued subset of the discourse universe,
i.e., a mapping from the discourse universe into L.

It is worthy to note that in the second and third truth valuation rules ∧ and
→ on the left-hand side are two connectives in quantum logic, whereas ∧
and → on the right-hand side are two operations on the truth-value set L.
Let G be a set of formulas and w a formula. Then w is called a semantic

consequence of G in l-valued logic, written G |5
l

w, if we have ∧cPG c #
w for all l-valued interpretations.

We conclude this section by recalling the concept of quantum automaton.
Let S be a finite alphabet. Then an l-valued (quantum) automaton over S is
a quadruple R 5 ^Q, I, T, d&, where:

1. Q is a finite set of states.
2. I # Q is the set of initial states.
3. T # Q is the set of terminal states.
4. d is an l-valued subset of Q 3 S 3 Q, i.e., a mapping from Q 3

S 3 Q into L and it is called the l-valued (quantum) transition
relation of R. Intuitively, for any p, q P Q and s P S, d( p, s, q)
indicates the truth value of the proposition that input s causes state
p to become q.

An l-valued automaton over S determines an l-valued (unary) predicate recR

on S* 5 ø`
k50Sk, and it is defined as follows: for all k $ 0, s1, . . . , sk P S,

recR(s1 ??? sk)

5
def

(∃q0 P I, q1, . . . , qk21 P Q, qk P T ) pathR(q0s1q1 ??? qk21skqk)
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where

pathR(q0s1q1 ??? qk21skqk) 5
def `k21

i50 [(qi , si11, qi11) P d]

Intuitively, recR(s1 ??? sk) stands for the proposition that the word s1 ??? sk

is recognized by the quantum automaton R, and its truth value is

recR(s1 ??? sk) 5 ~q0PI,q1,...,qk21PQ,qkPT `k51
i50 d(qi, si11, qi11)

We call an l-valued subset of S* an l-valued (quantum) language over S.
Thus, recR may be interpreted as an l-valued language over S, i.e., recR may
be seen as a mapping from S* into L and for each s P S* it assigns recR(s)
to s. We may further define the l-valued (unary) predicate RecS on l-valued
languages over S: for any A P LS*,

RecS(A) 5
def

(∃R P A(S, l))(A [ recR)

where A(S, l) is the class of l-valued automata over S. Intuitively, RecS(A)
is the proposition that the l-valued language A is recognizable. It is easy to
see that its truth value is

RecS(A) 5 ~RPA(S,l) `sPS* (A(s) } recR(s))

where a } b 5
def

(a → b) ∧ (b → a) for any a, b P L.

3. THE PUMPING LEMMA

In classical automata theory, the pumping lemma is a powerful tool to
show that certain languages are not regular. The purpose of this section is
to establish a pumping lemma in automata theory based on quantum logic.
As we shall see shortly, this pumping lemma depends on certain properties
of implication in the underlying logic.

Proposition 1 (Pumping Lemma). Let the implication operator → satisfy
the following conditions for all a, b, c P L and for any {ai: i P I}, {bi: i P
I} # L:

1. a # b implies a → b 5 1
2. b # c implies a → b # a → c
3. (a → b) ∧ (b → c) # a → c
4. ∧iPI (ai → bi) # ∧iPI ai → ∧iPI bi

5. ∧iPI (ai → bi) # ∨iPI ai → ∨iPI bi

Then for any l-valued language A P LS* over S,
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|5
l

RecS(A) → (∃n $ 0) (∀s P S*) [s P A ` .s. $ n →

(∃u, v, w, P S*) (s 5 uvw ` .uv. # n ` .v. $ 1

` (∀i $ 0) (uviw P A))]

where for any word t 5 s1 ??? sk P S*, .t. stands for the length n of t.

Proof. With the condition 1, it suffices to show that

RecS(A) # (∃n $ 0) (∀s P S*) [s P A ` .s. $ n → (∃u, v, w P S*)

(s 5 uvw ` .uv. # n ` .v. $ 1 ` (∀i $ 0) (uviw P A))]

5 ~n$0 `sPS*,.s.$n (A(s) → ~u,v,wPS*,s5uvw,.uv.#n,.v.$1`i$0 A(uviw))

Noting that

RecS(A) 5 ~RPA(S,l) A [ recR

we only need to prove that for any R P A(S, l),

A [ recR # ~n$0 `sPS*,.s.$n(A(s)

→ ~u,v,wPS*,s5uvw,.uv.#n,.v.$1 `i$0 A(uviw))

Now, we demonstrate the above inequality. Let R P A(S, l) and let Q
be the set of states of R. First, it holds that for any s P S* with .s. $ .Q.,

recR(s) # ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 recR(uviw) (1)

In fact, suppose that s 5 s1 ??? sk. Then

recR(s) 5 ~q0PI,q1,...,qk21PQ,qkPT `k21
i50 d(qi , si11, qi11) (2)

Therefore, it amounts to showing that for any q0 P I, q1, . . . , qk21 P Q and
qk P T,

`k21
i50 d(qi , si11, qi11) # ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 recR(uviw) (3)

Since k 5 .s. $ .Q., there are two identical states among q0, q1, . . . , q.Q.;
in other words, there are m $ 0 and n . 0 such that m 1 n # .Q. and qm 5
qm1n. We set u0 5 s1 ??? sm , v0 5 sm11 ??? sm1n, and w0 5 sm1n11 ??? sk.
Then s 5 u0v0w0, .u0v0. 5 m 1 n # .Q., .v. 5 n $ 1, and

~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 recR(uviw) $ `i$0 recR(u0vi
0w0) (4)

From the definition of recR, it is easy to see that for all i $ 0,

recR(u0vi
0w0)

$ pathR(q0s1q1 ??? smqm(sm11qm11 ??? sm1nqm1n)i
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sm1n11qm1n11 ??? skqk)

5 `m1n21
i50 d(qj , sj11, qj11) ``i21

l51 [d(qm1n, sm11, qm11)

` `m1n21
j5m11 d(qj , sj11, qj11)] ``k21

j5m1n d(qj , sj11, qj11)

5 `k21
j50 d(qj , sj11, qj11) (5)

because qm1n 5 qm and d(qm1n, sm11, qm11) 5 d(qm , sm11, qm11). Thus, by
combining (4) and (5), we obtain (3) which, together with (2), yields (1).

Second, with the conditions 4 and 5 we have

~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 recR(uviw)

→ ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 A(uviw)

$ `u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 (`i$0 recR(uviw) → `i$0 A(uviw))

$ `u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 (recR(uviw) → A(uviw))

$ `tPS* (recR(t) → A(t)) 5 recR # A (6)

Finally, using (1) and (6) and Conditions 2 and 3, we obtain

A [ recR 5 A # recR ` recR # A

5 `sPS*(A(s) → recR(s)) ` recR # A

5 `sPS*((A(s) → recR(s)) ` recR # A)

# `sPS*,.s.$.Q. ((A(s) → recR(s)) ` recR # A)

# `sPS*,.s.$.Q. ({A(s) → ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1

`i$0 recR(uviw)} ` recR # A)

# `sPS*,.s.$.Q. ({A(s) → ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1

`i$0 recR(uviw)}

` {~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 recR(uviw) →

~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1 `i$0 A(uviw)})

# `sPS*,.s.$.Q. (A(s) → ~u,v,wPS*,s5uvw,.uv.#.Q.,.v.$1

`i$0 A(uviw))

# ~n$0 `sPS*,.s.$n (A(s) → ~u,v,wPS*,s5uvw,.uv.#n,.,v.$1

`i$0 A(uviw))

This completes the proof. n
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4. OPERATIONS ON QUANTUM AUTOMATA

In automata theory, product, union, and inverse of automata are three
basic operations. The inverse of the automaton was discussed in [Y00]. This
section considers the relationship between the language recognized by the
product or union of automata and the languages recognized by its components
in quantum logic. First, we consider the product of quantum automata. Let
R 5 (QA , IA , TA , dA), ℘ 5 (QB , IB , TB , dB) P A (S, l) be two l-valued
automata over S. Then their product I 5 R 3 ℘ is (QC , IC , TC , dC) and
it is defined as follows:

1. QC 5 QA 3 QB.
2. IC 5 IA 3 IB.
3. TC 5 TA 3 IB.
4. dC: QC 3 S 3 QC → L and for any s P S, pa , qa P QA , and pb ,

qb P QB ,

dC(( pa , pb), s, (qa , qb)) 5 dA( pa , s, qa) ` dB( pb , s, qb)

Proposition 2. Suppose that the implication operator → on L satisfies
that a } b 5

def
(a → b) ` (b → a) 5 1 if and only if a 5 b for any a, b P

L. Then the following two statements are equivalent:
(i) The meet ∧ is (finitely) distributive over the union ∨ in l, i.e., for

all a, b, c P L, a ∧ (b ∨ c) 5 (a ∧ b) ∨ (a ∧ c).
(ii) For any R, ℘ P A(S, l) and for any s P S*

|5
l

recR3℘(s) } recR(s) ` rec℘(s)

Proof. We first prove (i) implies (ii). Let s 5 s1 ??? sk. Then

recR (s) ` rec℘ (s) 5 recR (s) ` rec℘ (s)

5 {~qa0PIA,qa1,...,qa(k21)PQA,qakPTA `k21
i50 dA(qai,si11, qa(i11))}

` {~qb0PIB,qb1,...,qb(k21)PQB,qbkPTB
`k21

i50 dB(qbi, si11, qb(i11))}

Since QA and QB are finite, IA , TA # QA and IB , TB # QB , we can use (i)
and obtain:

recR(s) ` rec℘(s)

5 ~qa0PIA,qa1,...,qa(k21)PQA,qakPTA

~qb0PIB,qb1,...,qb(k21)PQB,qbkPTB
[`k21

i50 dA(qai, si11, qa(i11))

``k21
i50 dB(qbi, si11, qb(i11))]
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5 ~(qa0,qb0)PIA3IB, (qa1,qb1),...,(qa(k21),qb(k21))PQA 3QB,(qak,qbk)PTA3TB

[`k21
i50 (dA(qai, si11, qa(i11)) ` dB(qbi, si11, qb(i11)))]

~(qa0,qb0)PIA3IB,(qa1,qb1 ),...,(qa(k21),qb(k21))PQA3QB,(qak,qbk)PTA3TB

`k21
i50 dA3B((qai, qbi), si11, (qa(i11), qb(i11)))

5 recR3℘(s)

Second, we prove (ii) implies (i). For any a, b, c P L, we choose some
s0 P S and set R 5 ({p}, {p}, {p}, dA), where dA( p, s, p) 5 a if s 5 s0

and 0 otherwise, and ℘ 5 ({q, r, s}, {q}, {r, s}, dB), where dB(x, s, y) 5
b if x 5 q, y 5 r, and s 5 s0; c if x 5 q, y 5 s, and s 5 s0; and 0 otherwise.
Then R, ℘ P A(S, l), and it is easy to show that R 3 ℘ 5 ({( p, q), ( p, r),
( p, s)}, {( p, q)}, {( p, r), ( p, s)}, dA3B), where dA3B(( p, x), s, ( p, y)) 5 a
∧ b if x 5 q, y 5 r, and s 5 s0; a ∧ c if x 5 q, y 5 s and s 5 s0; and 0
otherwise. Furthermore, by a routine calculation we have

recR(s0) 5 a

rec℘(s0) 5 b ~ c

recR3℘(s0) 5 (a ` b) ~ (a ` c)

Therefore, with (ii) we finally obtain

a ` (b ~ c) 5 recR(s0) ` rec℘(s0)

5 recR3℘(s0) 5 (a ` b) ~ (a ` c) n

We now consider the union of quantum automata. Let R 5 (QA , IA ,
TA , dA) and ℘ 5 (QB , IB , TB , dB) P A(S, l) be two l-valued automata over
S. We assume that QA ù QB 5 f. Then the (disjoint) union of R and ℘ is
I 5 R ø ℘ 5 (QC , IC , TC , dC), where:

1. QC 5 QA ø QB.
2. IC 5 IA ø IB.
3. TC 5 TA ø IB.
4. dC: QC 3 S 3 QC → L is defined as follows: for any s P S and

for any p, q P QC 5 QA ø QB , dC( p, s, q) 5 dA( p, s, q) if p, q P QA ,
dB( p, s, q) if p, q P QB: and 0 otherwise.

Proposition 3. If the implication operator → satisfies that a } a 5 1
for any a P L, then for any R, ℘ P A(S, l) and for any s P S*
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|5
l

recRø℘(s) } recR(s) ~ rec℘(s)

Proof. Let s 5 s1 . . . sk. Then

recRø℘(s) 5 ~q0PIAøIB,q1,...,qk21PQAøQB,qkPTAøTB `k21
i50 dAøB(qi , si11, qi11)

5 [~[q0PIA,q1,...,qk21PQA,qkPTA `k21
i50 dAøB (qi , si11, qi11)]

~ [q0PIB,q1,...,qk21PQB,qkPTB `k21
i50 dAøB (qi , si11, qi11)]

~{`k21
i50 dAøB (qi , si11, qi11): q0 P IA ø IB , q1, . . . , qk21

P QA ø QB , qk P TA ø TB , and there are i, j such that

0 # i, j # k and qi P QA and qj P QB}

From the definition of Røp, we know that for any q0 P IA , q1, . . . , qk21 P
QA , qk P TA , we have

`k21
i50 dAøB(qi , si11, qi11) 5 `k21

i50 dA(qi , si11, qi11)

and for any q0 P IB , q1, . . . , qk21 P QB , qk P TB , we have

`k21
i50 dAøB(qi , si11, qi11) 5 `k21

i50 dB(qi , si11, qi11)

If q0 P IA ø IB, q1, . . . , qk21 P QA ø QB , qk P TA ø TB , and there are i,
j such that 0 # i, j # k and qi P QA and qj P QB , then we can find some
m P {0, 1, . . . , k 2 1} such that qm P QA and qm11 P QB , or qm P QB and
qm11 P QA. Then dAøB(qm , dm11, qm11) 5 0, and

`k21
i50 dAøB(qi , si11, qi11) 5 0

Therefore, it follows that

recRøp(s) 5 [~q0PIA,q1,...,qk21PQA,qkPTA `k21
i50 dA(qi , si11, qi11)]

~ [~q0PIB,q1,...,qk21PQB,qkPTB `k21
i50 dB(qi , si11, qi11)]

5 recR(s) ~ recp(s)

5 recR(s) ~ recp(s) n

5. CONCLUSION

In this paper, we continue our study of automata theory based on quantum
logic initiated in [Y00]. The pumping lemma is generalized into the setting
of orthomodular lattice-valued (quantum) automata, the operations of product
and union of quantum automata are introduced, and the relation between
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the language recognized by these operations of quantum automata and the
languages recognized by the operands is discussed. The most interesting
result obtained in this paper is that the language recognized by the product
of automata is the intersection of the languages recognized by the factors if
and only if the truth-value lattice of the underlying logic is distribtutive. This
is a negative conclusion in automata theory based on quantum logic, and it
means that the classical result concerning the product of automata does not
extend to quantum automata. This negative result stimulates us to consider
the problem of a logical revisit to mathematics. Various classical mathematical
results have been established based upon classical logic. Mathematicians
usually use logic implicitly in their reasoning, and they do not seriously care
which logical laws they have employed. But from a logician’s point of view,
it is very interesting to determine how strong a logic we need to validate a
given mathematical theorem, and which logic guarantees this theorem and
which does not among the large population of nonclassical logics. This
suggests new research topics. Proposition 2 is a simple example of this kind
of research.
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